Math 13 Fall 1999
EXAM 4 SOLUTIONS

6 problems, 10 points each

1. Suppose \(\int_{0}^{1} f(x) \, dx = 1, \int_{0}^{3} f(x) \, dx = 1 \). Evaluate (a) \(\int_{0}^{1} 2f(x) \, dx \), (b) \(\int_{0}^{3} f(x) \, dx \), (c) \(\int_{0}^{3} f(x) \, dx \).

 Solution: (a) \(2 \int_{0}^{1} f(x) \, dx = 2 \cdot 1 = 2 \), (b) \(\int_{0}^{3} f(x) \, dx - \int_{0}^{1} f(x) \, dx = 1 - 1 = 0 \), (c) \(\int_{0}^{3} f(x) \, dx = \int_{0}^{1} f(x) \, dx = -1 \).

2. Suppose that \(F \) is an antiderivative of a differentiable function \(f \). (a) If \(F \) is concave up, what is true about \(f \)? (b) If \(G \) is another antiderivative of \(f \), what is the relation between \(F \) and \(G \)? Explain.

 Solution: (a) Since \(F \) is concave up, \(F' = f \) is increasing. (b) Since \(F' = G' = f \), we have \((F - G)' = f - f = 0 \), so \(F - G \) is constant.

3. Suppose that \(F(x) = \int_{-1}^{3} f(u) \, du \). Evaluate the following in terms of \(F \):

 (a) \(\int_{-1}^{3} (f(x) + 2) \, dx \), (b) \(\int_{-1}^{3} f(x) \, dx + \int_{-1}^{3} f(x) \, dx \).

 Solution: (a) \(\int_{-1}^{3} f(x) \, dx + \int_{-1}^{3} 2 \, dx = F(3) + 8 \), (b) \(\int_{-1}^{3} f(x) \, dx = F(3) \).

4. Evaluate the following: (a) \(\int_{1}^{4} \frac{1}{\sqrt{3x}} \, dx \), (b) \(\int_{0}^{2} e^{2x+1} \, dx \). (Hint: Simplify first).

 Solution: (a) \(\frac{1}{\sqrt{3}} \int_{1}^{4} x^{-1/2} \, dx = \frac{1}{\sqrt{3}} \left[2x^{1/2} \right]_{1}^{4} = \frac{2}{\sqrt{3}}(\sqrt{4} - \sqrt{1}) = \frac{2}{\sqrt{3}} \).
\[(b) = e^2 \int_0^1 e^{2x} dx = e \left[\frac{1}{2} e^{2x} \right]_0^1 = \frac{e}{2} (e^1 - e^0) = \frac{e}{2} (e - 1). \]

5. Let \(f \) be the function graphed below. Estimate the value of \(\int_0^{10} f(x) dx \) by finding the left sum and the midpoint sum each with 5 equal subintervals.

\[Solution: \quad L_4 = 2(2+8+10+8+2) = 60, \quad M_4 = 2(5.5+9.5+9.5+5-2) = 54. \]

6. Sketch the region between the curves \(y = e^x, \quad y = e, \quad \) and the \(y \)-axis, and find the area of the region.

\[\text{Solution:} \quad \text{The area} = \int_0^1 (e - e^x) dx = (ex - e^x)|_0^1 = (e1 - e^1) - (0 - e^0) = e - e - 0 + 1 = 1. \]